Efficient Nonnegative Tensor Factorization via Saturating Coordinate Descent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Sparse non-negative tensor factorization using columnwise coordinate descent

Many applications in computer vision, biomedical informatics, and graphics deal with data in the matrix or tensor form. Non-negative matrix and tensor factorization, which extract data-dependent non-negative basis functions, have been commonly applied for the analysis of such data for data compression, visualization, and detection of hidden information (factors). In this paper, we present a fas...

متن کامل

A Fast Algorithm for Nonnegative Tensor Factorization using Block Coordinate Descent and an Active-set-type method

Nonnegative factorization of tensors plays an important role in the analysis of multi-dimensional data in which each element is inherently nonnegative. It provides a meaningful lower rank approximation, which can further be used for dimensionality reduction, data compression, text mining, or visualization. In this paper, we propose a fast algorithm for nonnegative tensor factorization (NTF) bas...

متن کامل

A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion

This paper considers regularized block multi-convex optimization, where the feasible set and objective function are generally non-convex but convex in each block of variables. We review some of its interesting examples and propose a generalized block coordinate descent method. (Using proximal updates, we further allow non-convexity over some blocks.) Under certain conditions, we show that any l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Knowledge Discovery from Data

سال: 2020

ISSN: 1556-4681,1556-472X

DOI: 10.1145/3385654